Программирование >>  Поддержка объектно-ориентированного программирования 

1 ... 79 80 81 [ 82 ] 83 84 85 ... 120


Нужна общая стратегия для эффективного использования обработчиков в программе. Все компоненты программы должны согласованно использовать особые ситуации и иметь общую часть для обработки ошибок. Механизм обработки особых ситуаций является нелокальным по своей сути, поэтому так важно придерживаться общей стратегии. Это предполагает, что стратегия обработки ошибок должна разрабатываться на самых ранних стадиях проектах. Кроме того, эта стратегия должна быть простой (по сравнению со сложностью всей программы) и ясной. Последовательно проводить сложную стратегию в такой сложной по своей природе области программирования, как восстановление после ошибок, будет просто невозможно.

Прежде всего стоит сразу отказаться от того, что одно средство или один прием можно применять для обработки всех ошибок. Это только усложнит систему. Удачная система, обладающая устойчивостью к ошибкам, должна строиться как многоуровневая. На каждом уровне надо обрабатывать настолько много ошибок, насколько это возможно без нарушения структуры системы, оставляя обработку других ошибок более высоким уровням. Назначение terminate() поддержать такой подход, предоставляя возможность экстренного выхода из такого положения, когда нарушен сам механизм обработки особых ситуаций, или когда он используется полностью, но особая ситуация оказалась неперехваченной. Функция unexpected() предназначена для выхода из такого положения, когда не сработало основанное на описании всех особых ситуаций средство защиты. Это средство можно представлять как брандмауер, т.е. стену, окружающую каждую функцию, и препятствующую распространению ошибки. Попытка проводить в каждой функции полный контроль, чтобы иметь гарантию, что функция либо успешно завершится, либо закончится неудачно, но одним из определенных и корректных способов, не может принести успех. Причины этого могут быть различными для разных программ, но для больших программ можно назвать следующие:

[1] работа, которую нужно провести, чтобы гарантировать надежность каждой функции, слишком велика, и поэтому ее не удастся провести достаточно последовательно;

[2] появятся слишком большие дополнительные расходы памяти и времени, которые будут недопустимы для нормальной работы системы (будет тенденция неоднократно проверять на одну и ту же ошибку, а значит постоянно будут проверяться переменные с правильными значениями);

[3] таким ограничениям не будут подчиняться функции, написанные на других языках;

[4] такое понятие надежности является чисто локальным и оно настолько усложняет систему, что становится дополнительной нагрузкой для ее общей надежности.

Однако, разбить программу на отдельные подсистемы, которые либо успешно завершаются, либо заканчиваются неудачно, но одним из определенных и корректных способов, вполне возможно, важно и даже выгодно. Таким свойством должны обладать основные библиотеки, подсистемы или ключевые функции. Описание особых ситуаций должно входить в интерфейсы таких библиотек или подсистем.

Иногда приходится от одного стиля реакции на ошибку переходить на другой. Например, можно после вызова стандартной функции С проверять значение errno и, возможно, запускать особую ситуацию, а можно, наоборот, перехватывать особую ситуацию и устанавливать значение errno перед выходом из стандартной функции в С-программу:

void callC()

errno = 0; cfunction();

if (errno) throw some exception(errno);

void fromC()

try {

c pl pl function();

catch (...) {

errno = E CPLPLFCTBLEWIT;



При такой смене стилей важно быть последовательным, чтобы изменение реакции на ошибку было полным.

Обработка ошибок должна быть, насколько это возможно, строго иерархической системой. Если в функции обнаружена динамическая ошибка, то не нужно обращаться за помощью для восстановления или выделения ресурсов к вызывающей функции. При таких обращениях в структуре системы возникают циклические зависимости, в результате чего ее труднее понять, и возможно возникновение бесконечных циклов в процессе обработки и восстановления после ошибки.

Чтобы часть программы, предназначенная для обработки ошибок была более упорядоченной, стоит применять такие упрощающие дело приемы, как запрос ресурсов путем инициализации , и исходить из таких упрощающих дело допущений, что особые ситуации являются ошибками .

9.9 Упражнения

1. (*2) Обобщите класс STC до шаблона типа, который позволяет хранить и устанавливать функции разных типов.

2. (*3) Дополните класс CheckedPtrToT из $$7.10 до шаблона типа, в котором особые ситуации сигнализируют о динамических ошибках.

3. (*3) Напишите функцию find для поиска в бинарном дереве узлов по значению поля типа char*. Если найден узел с полем, имеющим значение hello , она должна возвращать указатель на него. Для обозначения неудачного поиска используйте особую ситуацию.

4. (*1 ) Определите класс Int, совпадающий во всем со встроенным типом int за исключением того, что вместо переполнения или потери значимости в этом классе запускаются особые ситуации. Подсказка: см. $$9.3.2.

5. (*2) Перенесите из стандартного интерфейса С в вашу операционную систему основные операции с файлами: открытие, закрытие, чтение и запись. Реализуйте их как функции на С++ с тем же назначением, что и функций на С, но в случае ошибок запускайте особые ситуации.

6. Напишите полное определение шаблона типа Vector с особыми ситуациями Range и Size. Подсказка: см. $$9.3.

7. (*1 ) Напишите цикл для вычисления суммы элементов вектора, определенного в упражнении 6, причем не проверяйте размер вектора. Почему это плохое решение?

8. (*2.5) Допустим класс Exception используется как базовый для всех классов, задающих особые ситуации. Каков должен быть его вид? Какая от него могла быть польза? Какие неудобства может вызвать требование обязательного использования этого класса?

9. (*2) Напишите класс или шаблон типа, который поможет реализовать обратный вызов.

I 0. (*2) Напишите класс Lock (замок) для какой-нибудь системы, допускающей параллельное

выполнение.

II . (*1 ) Пусть определена функция

int main() { /* ... */ }

Измените ее так, чтобы в ней перехватывались все особые ситуации, преобразовывались в сообщения об ошибке и вызов abort(). Подсказка: в функции fromC() из $$9.8 учтены не все случаи.



ГЛАВА 10. ПОТОКИ

Доступно только то, что видимо

Б. Керниган

В языке С++ нет средств для ввода-вывода. Их и не нужно, поскольку такие средства можно просто и элегантно создать на самом языке. Описанная здесь библиотека потокового ввода-вывода реализует строгий типовой и вместе с тем гибкий и эффективный способ символьного ввода и вывода целых, вещественных чисел и символьных строк, а также является базой для расширения, рассчитанного на работу с пользовательскими типами данных. Пользовательский интерфейс библиотеки находится в файле <iostream.h>. Эта глава посвящена самой потоковой библиотеке, некоторым способам работы с ней и определенным приемам реализации библиотеки.

10.1 ВВЕДЕНИЕ

Широко известна трудность задачи проектирования и реализации стандартных средств ввода-вывода для языков программирования. Традиционно средства ввода-вывода были рассчитаны исключительно на небольшое число встроенных типов данных. Однако, в нетривиальных программах на С++ есть много пользовательских типов данных, поэтому необходимо предоставить возможность ввода-вывода значений таких типов. Очевидно, что средства ввода-вывода должны быть простыми, удобными, надежными в использовании и, что важнее всего, адекватными. Пока никто не нашел решения, которое удовлетворило бы всех; поэтому необходимо дать возможность пользователю создавать иные средства ввода-вывода, а также расширять стандартные средства ввода-вывода в расчете на определенное применение.

Цель создания С++ была в том, чтобы пользователь мог определить новые типы данных, работа с которыми была бы столь же удобна и эффективна как и со встроенными типами. Таким образом, кажется разумным потребовать, чтобы средства ввода-вывода для С++ программировались с использованием возможностей С++, доступных каждому. Представленные здесь потоковые средства ввода-вывода появились в результате попытки удовлетворить этим требованиям.

Основная задача потоковых средств ввода-вывода - это процесс преобразования объектов определенного типа в последовательность символов и наоборот. Существуют и другие схемы ввода-вывода, но указанная является основной, и если считать символ просто набором битов, игнорируя его естественную связь с алфавитом, то многие схемы двоичного ввода-вывода можно свести к ней. Поэтому программистская суть задачи сводится к описанию связи между объектом определенного типа и бестиповой (что существенно) строкой.

Последующие разделы описывают основные части потоковой библиотеки С++:

1 0.2 Вывод: То, что для прикладной программы представляется выводом, на самом деле является преобразованием таких объектов как int, char *, complex или Employee record в последовательность символов. Описываются средства для записи объектов встроенных и пользовательских типов данных.

1 0.3 Ввод: Описаны функции для ввода символов, строк и значений встроенных и пользовательских типов данных.

10.4 Форматирование: Часто существуют определенные требования к виду вывода, например, int должно печататься десятичными цифрами, указатели в шестнадцатеричной записи, а вещественные числа должны быть с явно заданной точностью фиксированного размера. Обсуждаются функции форматирования и определенные программистские приемы их создания, в частности, манипуляторы.

1 0.5 Файлы и потоки: Каждая программа на С++ может использовать по умолчанию три потока -стандартный вывод (cout), стандартный ввод (cin) и стандартный поток ошибок (cerr). Чтобы работать с какими-либо устройствами или файлами надо создать потоки и привязать их к этим устройствам или файлам. Описывается механизм открытия и закрытия файлов и связывания файлов с потоками.

10.6 Ввод-вывод для С: обсуждается функция printf из файла <stdio.h> для С а также связь между



1 ... 79 80 81 [ 82 ] 83 84 85 ... 120

© 2006 - 2024 pmbk.ru. Генерация страницы: 0
При копировании материалов приветствуются ссылки.
Яндекс.Метрика