|
Программирование >> Поддержка объектно-ориентированного программирования
стандартный способ задания бесконечного цикла, и его можно обозначить словом вечно . Это вырожденная форма оператора for, и альтернативой ей может служить оператор while(1). Оператор switch выполняется повторно до тех пор, пока не перестанут появляться операции + или - , а тогда по умолчанию выполняется оператор return (default). Операции += и -= используются для выполнения операций сложения и вычитания. Можно написать эквивалентные присваивания: left=left+term() и left=left-term(). Однако вариант left+=term() и left-=term() не только короче, но и более четко определяет требуемое действие. Для бинарной операции @ выражение x@=y означает x=x@y, за исключением того, что x вычисляется только один раз. Это применимо к бинарным операциям: + - * / % & << >> поэтому возможны следующие операции присваивания: += -= *= /= %= &= = = <<= >>= Каждая операция является отдельной лексемой, поэтому a + =1 содержит синтаксическую ошибку (из-за пробела между + и =). Расшифровка операций следующая: % - взятие остатка, &, и - разрядные логические операции И, ИЛИ и Исключающее ИЛИ; << и >> сдвиг влево и сдвиг вправо. Функции term() и get token() должны быть описаны до определения expr(). В главе 4 рассматривается построение программы в виде совокупности файлов . За одним исключением , все программы калькулятора можно составить так, чтобы в них все объекты описывались только один раз и до их использования. Исключением является функция expr(), которая вызывает функцию term(), а она, в свою очередь, вызывает prim(), и уже та, наконец, вгзывает expr(). Этот цикл необходимо как-то разорвать, для чего вполне подходит заданное до определения prim() описание: double expr(); это описание необходимо Функция term() справляется с умножением и делением аналогично тому, как функция expr() со сложением и вычитанием: double term() умножает и складывает double left = prim(); for(;;) switch(curr tok) { case MUL: get token(); случай * left *= prim(); break; case DIV: get token(); случай / double d = prim(); if (d == 0) return error( деление на 0 ); left /= d; break; default: return left; Проверка отсутствия деления на нуль необходима, поскольку результат деления на нуль неопределен и, как правило, приводит к катастрофе. Функция error() будет рассмотрена позже. Переменная d появляется в программе там, где она действительно нужна, и сразу же инициализируется. Во многих языках описание может находиться только в начале блока. Но такое ограничение может искажать естественную структуру программы и способствовать появлению ошибок. Чаще всего не инициализированные локальные переменные свидетельствуют о плохом стиле программирования. Исключение составляют те переменные, которые инициализируются операторами ввода, и переменные типа массива или структуры, для которых нет традиционной инициализации с помощью одиночных присваиваний. Следует напомнить, что = является операцией присваивания, тогда как == есть операция сравнения. Функция prim, обрабатывающая первичное, во многом похожа на функции expr и term(). Но раз мы дошли до низа в иерархии вызовов, то в ней кое-что придется сделать. Цикл для нее не нужен: double number value; char name string[256]; double prim() обрабатывает первичное switch (curr tok) { case NUMBER: константа с плавающей точкой get token(); return number value; case NAME: if (get token() == ASSIGN) { name* n = insert(name string); get token(); n->value = expr(); return n->value; return look(name string)->value; case MINUS: унарный минус get token(); return -prim(); case LP: get token(); double e = expr(); if (curr tok != RP) return error( требуется ) ); get token(); return e; case END: return 1; default: return error( требуется первичное ); Когда появляется NUMBER (то есть константа с плавающей точкой), возвращается ее значение. Функция ввода get token() помещает значение константы в глобальную переменную number value. Если в программе используются глобальные переменные, то часто это указывает на то, что структура не до конца проработана, и поэтому требуется некоторая оптимизация. Именно так обстоит дело в данном случае. В идеале лексема должна состоять из двух частей: значения, определяющего вид лексемы (в данной программе это token value), и (если необходимо) собственно значения лексемы. Здесь же имеется только одна простая переменная curr tok, поэтому для хранения последнего прочитанного значения NUMBER требуется глобальная переменная number value. Такое решение проходит потому, что калькулятор во всех вычислениях вначале выбирает одно число, а затем считывает другое из входного потока. В качестве упражнения предлагается избавиться от этой излишней глобальной переменной ($$3.5 [15]). Если последнее значение NUMBER хранится в глобальной переменной number value, то строковое представление последнего значения NAME хранится в name string. Перед тем, как что-либо делать с именем, калькулятор должен заглянуть вперед, чтобы выяснить, будет ли ему присваиваться значение, или же будет только использоваться существующее его значение. В обоих случаях надо обратиться к таблице имен. Эта таблица рассматривается в $$3.1.3; а здесь достаточно только знать, что она состоит из записей, имеющих вид: struct name { char* string; name* next; double value; Член next используется только служебными функциями, работающими с таблицей: name* look(const char*); name* insert(const char*); Обе функции возвращают указатель на ту запись name, которая соответствует их параметру-строке. Функция look() ругается , если имя не было занесено в таблицу. Это означает, что в калькуляторе можно использовать имя без предварительного описания, но в первый раз оно может появиться только в левой части присваивания. 3.1.2 Функция ввода Получение входных данных - часто самая запутанная часть программы. Причина кроется в том, что программа должна взаимодействовать с пользователем, то есть мириться с его прихотями, учитывать принятые соглашения и предусматривать кажущиеся редкими ошибки. Попытки заставить человека вести себя более удобным для машины образом, как правило, рассматриваются как неприемлемые, что справедливо. Задача ввода для функции низкого уровня состоит в последовательном считывании символов и составлении из них лексемы, с которой работают уже функции более высокого уровня. В этом примере низкоуровневый ввод делает функция get token(). К счастью, написание низкоуровневой функции ввода достаточно редкая задача. В хороших системах есть стандартные функции для таких операций. Правила ввода для калькулятора были специально выбраны несколько громоздкими для потоковых функций ввода. Незначительные изменения в определениях лексем превратили бы get token() в обманчиво простую функцию. Первая сложность состоит в том, что символ конца строки \n важен для калькулятора, но потоковые функции ввода воспринимают его как символ обобщенного пробела. Иначе говоря, для этих функций \n имеет значение только как символ, завершающий лексему. Поэтому приходится анализировать все обобщенные пробелы (пробел, табуляция и т.п.). Это делается в операторе do, который эквивалентен оператору while, за исключением того, что тело оператора do всегда выполняется хотя бы один раз: char ch; do { пропускает пробелы за исключением \n if(!cin.get(ch)) return curr tok = END; } while (ch!=\n && isspace(ch)); Функция cin.get(ch) читает один символ из стандартного входного потока в ch. Значение условия if(!cin.get(ch)) - ложь, если из потока cin нельзя получить ни одного символа. Тогда возвращается лексема END, чтобы закончить работу калькулятора. Операция ! (NOT) нужна потому, что в случае успешного считывания get() возвращает ненулевое значение. Функция-подстановка isspace() из <ctype.h> проверяет, не является ли ее параметр обобщенным пробелом ($$1 0.3.1 ). Она возвращает ненулевое значение, если является, и нуль в противном случае. Проверка реализуется как обращение к таблице, поэтому для скорости лучше вызывать isspace(), чем проверять самому. То же можно сказать о функциях isalpha(), isdigit() и isalnum(), которые используются в get token(). После пропуска обобщенных пробелов следующий считанный символ определяет, какой будет начинающаяся с него лексема. Прежде, чем привести всю функцию, рассмотрим некоторые случаи отдельно. Лексемы \n и ;, завершающие выражение, обрабатываются следующим образом: switch (ch) { case case \n: cin >> ws; пропуск обобщенного пробела return curr tok=PRINT; Необязательно снова пропускать пробел, но, сделав это, мы избежим повторных вызовов функции get token(). Переменная ws, описанная в файле <stream.h>, используется только как приемник ненужных пробелов. Ошибка во входных данных, а также конец ввода не будут обнаружены до следующего вызова функции get token(). Обратите внимание, как несколько меток выбора помечают одну последовательность операторов, заданную для этих вариантов. Для обоих символов (\n и ;)
|
© 2006 - 2024 pmbk.ru. Генерация страницы: 0
При копировании материалов приветствуются ссылки. |