|
Программирование >> Поддержка объектно-ориентированного программирования
ничего не знает об управляющем классе. Если функция не уничтожает объект, на который она получила указатель, и если она не сохраняет указатель для дальнейшего использования после возврата, никаких ошибок быть не должно. Может оказаться полезным переключение управляющего класса на другую содержательную часть: class set handle { set* rep; public: ... set* get rep() { return rep; } void bind(set* pp) pp->handle count++; if (--rep->handle count == 0) delete rep; rep = pp; Создание новых производных от set handle классов обычно не имеет особого смысла, поскольку это -конкретный тип без виртуальных функций. Другое дело - построить управляющий класс для семейства классов, определяемых одним базовым. Полезным приемом будет создание производных от такого управляющего класса. Этот прием можно применять как для узловых классов, так и для абстрактных типов. Естественно задавать управляющий класс как шаблон типа: template<class T> class handle { T* rep; public: T* operator->() { return rep; } ... Но при таком подходе требуется взаимодействие между управляющим и управляемым классами. Если управляющий и управляемые классы разрабатываются совместно, например, в процессе создания библиотеки, то это может быть допустимо. Однако, существуют и другие решения ($$1 3.1 0). За счет перегрузки операции -> управляющий класс получает возможность контроля и выполнения каких-то операций при каждом обращении к объекту. Например, можно вести подсчет частоты использования объектов через управляющий класс: template<class T> class Xhandle { T* rep; int count; public: T* operator->() { count++; return rep; } ... Нужна более сложная техника, если требуется выполнять операции как перед, так и после обращения к объекту. Например, может потребоваться множество с блокировкой при выполнении операций добавления к множеству и удаления из него. Здесь, по сути, в управляющем классе приходится дублировать интерфейс с объектами содержательной части: class set controller { set* rep; ... public: lock(); unlock(); virtual void insert(T* p) { lock(); rep->insert(p); unlock(); } virtual void remove(T* p) { lock(); rep->remove(p); unlock(); } virtual int is member(T* p) { return rep->is member(p); } virtual T* first() { return rep->first(); } virtual T* next() { return rep->next(); } Писать функции-переходники для всего интерфейса утомительно (а значит могут появляться ошибки), но не трудно и это не ухудшает характеристик программы. Заметим, что не все функции из set следует блокировать. Как показывает опыт автора, типичный случай, когда операции до и после обращения к объекту надо выполнять не для всех, а только для некоторых функций-членов. Блокировка всех операций, как это делается в мониторах некоторых операционных систем, является избыточной и может существенно ухудшить параллельный режим выполнения. Переопределив все функции интерфейса в управляющем классе, мы получили по сравнению с приемом перегрузки операции ->, то преимущество, что теперь можно строить производные от set controller классы. К сожалению, мы можем потерять и некоторые достоинства управляющего класса, если к производным классам будут добавляться члены, представляющие данные. Можно сказать, что программный объем, который разделяется между управляемыми классами уменьшается по мере роста программного объема управляющего класса. 13.10 Управление памятью При проектировании библиотеки или просто программы с большим временем счета один из ключевых вопросов связан с управлением памятью. В общем случае создатель библиотеки не знает, в каком окружении она будет работать. Будет ли там ресурс памяти настолько критичен, что ее нехватка станет серьезной проблемой, или же серьезной помехой станут накладные расходы, связанные с управлением памятью? Один из основных вопросов управления памятью можно сформулировать так: если функция f() передает или возвращает указатель на объект, то кто должен уничтожать этот объект? Необходимо ответить и на связанный с ним вопрос: в какой момент объект может быть уничтожен? Ответы на эти вопросы особенно важны для создателей и пользователей таких контейнеров, как списки, массивы и ассоциативные массивы. С точки зрения создателя библиотеки идеальными будут ответы: Система и В тот момент, когда объект больше никто не использует . Когда система уничтожает объект, обычно говорят, что она занимается сборкой мусора, а та часть системы, которая определяет, что объект больше никем не используется, и уничтожает его, называется сборщиком мусора. К сожалению, использование сборщика мусора может повлечь за собой накладные расходы на время счета и память, прерывания полезных функций, определенную аппаратную поддержку, трудности связывания частей программы на разных языках или просто усложнение системы. Многие пользователи не могут позволить себе этого. Говорят, что программисты на Лиспе знают, насколько важно управление памятью, и поэтому не могут отдать его пользователю. Программисты на С тоже знают, насколько важно управление памятью, и поэтому не могут оставить его системе. Поэтому в большинстве программ на С++ не приходится рассчитывать на сборщик мусора и нужно предложить свою стратегию размещения объектов в свободной памяти, не обращаясь к системе. Но реализации С++ со сборщиком мусора все-таки существуют. Рассмотрим самую простую схему управления памятью для программ на С++. Для этого заменим operator new() на тривиальную функцию размещения, а operator delete() - на пустую функцию: inline size t align(size t s) Даже в простой функции размещения нужно выравнивание памяти, объект можно было настроить указатель произвольного типа чтобы на static void* freep; настроим start на свободную память void* operator new(size t s) простая линейная функция размещения void* p = freep; s = align(s); freep += s; return p; void operator delete(void*) { } пусто Если память бесконечна, то наше решение дает сборщик мусора без всяких сложностей и накладных расходов. Такой подход не применим для библиотек, когда заранее неизвестно, каким образом будет использоваться память, и когда программа, пользующаяся библиотекой, будет иметь большое время счета. Такой способ выделения памяти идеально подходит для программ, которым требуется ограниченный объем памяти или объем, пропорциональный размеру входного потока данных. 13.10.1 Сборщик мусора Сборку мусора можно рассматривать как моделирование бесконечной памяти на памяти ограниченного размера. Помня об этом, можно ответить на типичный вопрос: должен ли сборщик мусора вызывать деструктор для тех объектов, память которых он использует? Правильный ответ - нет, поскольку, если размещенный в свободной памяти объект не был удален, то он не будет и уничтожен. Исходя из этого, операцию delete можно рассматривать как запрос на вызов деструктора (и еще это - сообщение системе, что память объекта можно использовать). Но как быть, если действительно требуется уничтожить размещенный в свободной памяти объект, который не был удален? Заметим, что для статических и автоматических объектов такой вопрос не встает, - деструкторы для них неявно вызываются всегда. Далее, уничтожение объекта во время сборки мусора по сути является операцией с непредсказуемым результатом. Она может совершиться в любое время между последним использованием объекта и концом программы , а значит, в каком состоянии будет программа в этот момент неизвестно. Здесь использованы кавычки, потому что трудно точно определить, что такое конец программы. (прим. перев.) Трудно правильно запрограммировать такие операции и они не так полезны, как кажется. Задачу уничтожения объектов, если время этой операции точно не задано, можно решить с помощью программы обслуживания заявок на уничтожение. Назовем ее сервером заявок. Если объект необходимо уничтожить в конце программы, то надо записать в глобальный ассоциативный массив его адрес и указатель на функцию очистки . Если объект удален явной операцией, заявка аннулируется. При уничтожении самого сервера (в конце программы) вызываются функции очистки для всех оставшихся заявок. Это решение подходит и для сборки мусора, поскольку мы рассматриваем ее как моделирование бесконечной памяти. Для сборщика мусора нужно выбрать одно из двух решений: либо удалять объект, когда единственной оставшейся ссылкой на него будет ссылка, находящаяся в массиве самого сервера, либо (стандартное решение) не удалять объект до конца программы, поскольку все-таки ссылка на него есть. Сервер заявок можно реализовать как ассоциативный массив ($$8.8): class Register { Map<void*, void (*) (void*)> m; public: insert(void* po, void(*pf)()) { m[po]=pf; } remove(void* po) { m.remove(po); } Register cleanup register; union Word { void* p; long double d; long l; } int x = s + sizeof(Word) - 1; x -= x%sizeof(Word); return x;
|
© 2006 - 2025 pmbk.ru. Генерация страницы: 0.001
При копировании материалов приветствуются ссылки. |