|
Программирование >> Поддержка объектно-ориентированного программирования
13.7 Каркас области приложения Мы перечислили виды классов, из которых можно создать библиотеки, нацеленные на проектирование и повторное использование прикладных программ. Они предоставляют определенные строительные блоки и объясняют как из них строить. Разработчик прикладного обеспечения создает каркас, в который должны вписаться универсальные строительные блоки. Задача проектирования прикладных программ может иметь иное, более обязывающее решение: написать программу, которая сама будет создавать общий каркас области приложения. Разработчик прикладного обеспечения в качестве строительных блоков будет встраивать в этот каркас прикладные программы. Классы, которые образуют каркас области приложения, имеют настолько обширный интерфейс, что их трудно назвать типами в обычном смысле слова. Они приближаются к тому пределу, когда становятся чисто прикладными классами, но при этом в них фактически есть только описания, а все действия задаются функциями, написанными прикладными программистами. Для примера рассмотрим фильтр, т.е. программу, которая может выполнять следующие действия: читать входной поток, производить над ним некоторые операции, выдавать выходной поток и определять конечный результат. Примитивный каркас для фильтра будет состоять из определения множества операций, которые должен реализовать прикладной программист: class filter { public: class Retry { public: virtual const char* message() { return 0; } virtual void start() { } virtual int retry() { return 2; } virtual int read() = 0; virtual void write() { } virtual void compute() { } virtual int result() = 0; Нужные для производных классов функции описаны как чистые виртуальные, остальные функции просто пустые. Каркас содержит основной цикл обработки и зачаточные средства обработки ошибок: int main loop(filter* p) for (;;) { try { p->start(); while (p->read()) { p->compute(); p->write(); return p->result(); catch (filter::Retry& m) { cout << m.messageO << \n; int i = p->retry(); if (i) return i; catch (...) { cout << Fatal filter error\n ; return 1; Теперь прикладную программу можно написать так: myfilter(istream& ii, ostream& oo) : is(ii), os(oo), nchar(0) { } и вызывать ее следующим образом: int main() myfilter f(cin,cout); return main loop(&f); Настоящий каркас, чтобы рассчитывать на применение в реальных задачах, должен создавать более развитые структуры и предоставлять больше полезных функций, чем в нашем простом примере. Как правило, каркас образует дерево узловых классов. Прикладной программист поставляет только классы, служащие листьями в этом многоуровневом дереве, благодаря чему достигается общность между различными прикладными программами и упрощается повторное использование полезных функций, предоставляемых каркасом. Созданию каркаса могут способствовать библиотеки, в которых определяются некоторые полезные классы, например, такие как scrollbar ($$12.2.5) и dialog box ($$1 3.4). После определения своих прикладных классов программист может использовать эти классы. 13.8 Интерфейсные классы Про один из самых важных видов классов обычно забывают - это скромные интерфейсные классы. Такой класс не выполняет какой-то большой работы, ведь иначе, его не называли бы интерфейсным. Задача интерфейсном класса приспособить некоторую полезную функцию к определенному контексту. Достоинство интерфейсных классов в том, что они позволяют совместно использовать полезную функцию, не загоняя ее в жесткие рамки. Действительно, невозможно рассчитывать, что функция сможет сама по себе одинаково хорошо удовлетворить самые разные запросы. Интерфейсный класс в чистом виде даже не требует генерации кода. Вспомним описание шаблона типа Splist из $$8.3.2: template<class T> class Splist : private Slist<void*> { public: void insert(T* p) { Slist<void*>::insert(p); } void append(T* p) { Slist<void*>::append(p); } T* get() { return (T*) Slist<void*>::get(); } Класс Splist преобразует список ненадежных обобщенных указателей типа void* в более удобное семейство надежных классов, представляющих списки. Чтобы применение интерфейсных классов не было слишком накладно, нужно использовать функции-подстановки. В примерах, подобных приведенному, где задача функций-подстановок только подогнать тип, накладные расходы в памяти и скорости выполнения программы не возникают. Естественно, можно считать интерфейсным абстрактный базовый класс, который представляет class myfilter : public filter { istream& is; ostream& os; char c; int nchar; public: int read() { is.get(c); return is.goodO; } void compute() { nchar++; }; int result() { os << nchar << characters read\n ; return 0; абстрактный тип, реализуемый конкретными типами ($$1 3.3), также как и управляющие классы из раздела 13.9. Но здесь мы рассматриваем классы, у которых нет иных назначений - только задача адаптации интерфейса. Рассмотрим задачу слияния двух иерархий классов с помощью множественного наследования. Как быть в случае коллизии имен, т.е. ситуации, когда в двух классах используются виртуальные функции с одним именем, производящие совершенно разные операции? Пусть есть видеоигра под названием Дикий запад , в которой диалог с пользователем организуется с помощью окна общего вида (класс Window): class Window { ... virtual void draw(); class Cowboy { ... virtual void draw(); class CowboyWindow : public Cowboy, public Window { ... В этой игре класс CowboyWindow представляет движение ковбоя на экране и управляет взаимодействием игрока с ковбоем. Очевидно, появится много полезных функций, определенных в классе Window и Cowboy, поэтому предпочтительнее использовать множественное наследование, чем описывать Window или Cowboy как члены. Хотелось бы передавать этим функциям в качестве параметра объект типа CowboyWindow, не требуя от программиста указания каких-то спецификаций объекта. Здесь как раз и возникает вопрос, какую функции выбрать для CowboyWindow: Cowboy::draw() или Window::draw(). В классе CowboyWindow может быть только одна функция с именем draw(), но поскольку полезная функция работает с объектами Cowboy или Window и ничего не знает о CowboyWindow, в классе CowboyWindow должны подавляться (переопределяться) и функция Cowboy::draw(), и функция Window draw(). Подавлять обе функции с помощью одной - draw() неправильно, поскольку, хотя используется одно имя, все же все функции draw() различны и не могут переопределяться одной. Наконец, желательно, чтобы в классе CowboyWindow наследуемые функции Cowboy::draw() и Window::draw() имели различные однозначно заданные имена. Для решения этой задачи нужно ввести дополнительные классы для Cowboy и Window. Вводится два новых имени для функций draw() и гарантируется, что их вызов в классах Cowboy и Window приведет к вызову функций с новыми именами: class CCowboy : public Cowboy { virtual int cow draw(int) = 0; void draw() { cow draw(i); } переопределение Cowboy::draw class WWindow : public Window { virtual int win draw() = 0; void draw() { win draw(); } переопределение Window::draw Теперь с помощью интерфейсных классов CCowboy и WWindow можно определить класс CowboyWindow и сделать требуемые переопределения функций cow draw() и win draw: class CowboyWindow : public CCowboy, public WWindow { ... void cow draw(); void win draw();
|
© 2006 - 2024 pmbk.ru. Генерация страницы: 0
При копировании материалов приветствуются ссылки. |